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Abstract: The daily photograph scheduling problem of earth observation satellites such as Spot 5
consists of scheduling a subset of mono or stereo photographs from a given set of candidates to
different cameras. The scheduling must maximize a profit function while satisfying a large number
of constraints. In this paper, we first present a formulation of the problem as a generalized version
of the well-known knapsack model, which includes large numbers of binary and ternary "logical"
constraints. We then develop a tabu search algorithm which integrates some important features
including an efficient neighborhood, a dynamic tabu tenure mechanism, techniques for constraint
handling, intensification and diversification. Extensive experiments on a set of large and readlistic
benchmark instances show the effectiveness of this approach.
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1. Introduction

The daily photograph scheduling problem (DPSP) is one of the key applications for an earth
observation satellite such as Spot 5. The main purpose of the DPSP is to schedule a subset of
photographs from a set of candidate photographs which will be effectively taken by the satellite. The
resulting subset of photographs must satisfy a large number of imperative constraints of different
types and at the same time maximize a given profit function.

The profit function reflects several criteria such as client importance, demand urgency,
meteorological forecasts and so on. The constraints include both physical constraints such as the
recording capacity on board of the satellite and logic constraints such as non overlapping trials and
meeting the minimal transition time between two successive trials on the same camera

This problem is also important and interesting from a complexity point of view. Indeed, it can be
modeled as a generalized Knapsack problem, which is known to be NP-hard. So far, several methods
have been proposed to tackle this problem. These methods include exact algorithms based on Branch
and Bound techniques [Verfaillie et a. 96], integer linear programming with CPLEX and constraint
programming with the ILOG solver [Lemaitre & Verfaillie 97] as well as heuristics based on greedy
functions, simulated annealing and tabu search [Bensana et al. 96].

The goal of this paper is two fold. First, we introduce a new formulation of the DPSP using the well-
known 0/1 knapsack model. Second, we develop an original and effective tabu search (TS) algorithm
based on this formulation. This TS algorithm includes a set of important features including an



efficient neighborhood, an incremental technique for move evaluation, a mechanism for dynamic tabu
tenure, constraint handling technigues, and mechanisms for intensification and diversification.

This algorithm is extensively evaluated on a set of large and redlistic instances provided by the
French National Space Agency CNES (Centre National d'Etudes Spatiales). Experimental results
show the effectiveness of this algorithm both in terms of solution quality and speed of execution.
Indeed, the algorithm easily obtains the previously best known results for these instances. More
importantly, it produces much better solutions for the most difficult instances with very reasonable
computing times.

The paper is organized as follows, in the next section, the DPSP is described and modeled. Section 3
presents the details of the TS algorithm. Numerical results and comparisons are presented in Section
4. Implications are discussed in Section 5 and Section 6 concludes the paper.

2. Photograph daily scheduling problem (DPSP)

2.1. Problem definition

The photograph daily scheduling problem can be informally described as follows [Bensana et al. 98].
Problem Components

« AsetP={p, p,.., p,} of candidate photographs, mono or stereo, which can be scheduled to be
taken on the "next day" under appropriate conditions of the satellite trajectory and oblique viewing
capability.

« A "profit" associated with each photograph p, which is the result of the aggregation of several
criteria such as client importance, demand urgency, meteorological forecasts and so on.

» A "size" associated with each photograph p, which represents the amount of memory required to
record p, when it is taken.

« A set of possibilities associated with each photograph p, in P corresponding to the different ways
to take p;: 1) for amono p, there are three possibilities because a mono photograph can be taken by
any of the three cameras (front, middle and rear) on the satellite and 2) for a stereo p, thereis one
single possibility because a stereo photograph requires simultaneously the front and the rear
camera.

* A set of imperative hard constraints, which must be satisfied:

1. any two trials must not overlap and the minimal transition time between two successive
photographs on the same camera must be met;

2. limitations on the instantaneous data flow through the satellite telemetry resulting from
simultaneous photographs on different cameras;

3. capacity constraint: the recording capacity on board must not be exceeded.

Problem Objective

The DPSP isto find a subset P’ of P which satisfies all the imperative constraints and maximizes the
sum of the profits of the photographsin P. Thus, the goal is to maximize the total value of the items



(photographs) packed in the "knapsack”, subject to the constraint that the total size of all the packed
items does not exceed the knapsack capacity (constraint 3) and subject to other "logical constraints'
(constraints 1 and 2 above). The DPSP istherefore a constrained combinatorial optimization problem.
In practice, the number of photographsin P may be quite large (up to 1057 for the largest instance we

tested), implying a huge search space. Moreover, the presence of a large number of hard constraints
(up to tens of thousands) makes the problem difficult to solve.

2.2. Problem formulation
2.2.1 Representing a schedule
Let P be the set of candidate photographs and n =[Pl With each mono photograph p, in P, we
associate three pairs of elements (p, camera_1), (p,, camera_2), (p, camera_3). Similarly, with each
stereo photograph p, in P, we associate one pair (p, camera_13). Letting n1 and n2 be respectively the
number of mono and stereo photographsin P (n = nl + n2), there are in total m = 3*n1 + n2 possible
pairs of elements for the given set P of candidates. Now, associating a binary (decision) variable x,
with each such pair, a photograph schedul e corresponds to a binary vector:

X = (X}, X,y ooy X))
where x, = 1 if the corresponding pair (photo, camera) is present in the schedule, and x = O otherwise.
For example, if P={p,, p,, p,} where p, and p, are mono photographs and p, is a stereo photograph,
thenx =(1,0,0,0,0, 0, 1) represents a schedule in which p, istaken by camera 1, p, is rejected and p,
is taken by cameras 1 and 3. (Remember that a stereo photograph requires the front and the rear
cameras simultaneously.)

2.2.2 Evaluation of a schedule

Define the profit of a pair (p, camera) (or its 0-1 variable) to be the profit of the photograph p. The
total profit of all the pairs of the given set P is then represented by a vector:

9=(9, 9, 9,)

where g =g (i #]) if g and g correspond to two different pairs of elements involving the same
photograph p, i.e. (p, camera_x) and (p, camera_y).

Then the total profit value of a schedule x = (x,, X,,..., X_) is the sum of the profits of the photographs
ins i.e

f(X) = Z1SiSm g X

2.2.3 Constraints

* Capacity constraint



Define the size of apair (p, camera) (or its 0-1 variable) as the size of the photograph p. The total size
of all the pairs of the given set P isthen represented by a vector:

c=(c,C,..., C)

where ¢ = ¢ (i #]) if ¢ and ¢ correspond to two different pairs of elements involving the same
photograph p, i.e. (p, camera_x) and (p, camera_y).

The capacity constraint states that the sum of the sizes of the photographs in a schedule
X = (X, X,..., X,) cannot exceed the maximal recording capacity on board. This constraint is easily
expressed as a knapsack constraint:

2 <<, C . X < Max_capacity

=m -1

* Binary constraints

The constraints involving the non overlapping of two trials and the minimal transition time between
two successive trials of a camera, and also some constraints involving limitations on instantaneous
data flow are conveniently expressed by simple relations over two pairs (photo, camera). Such a
binary constraint corresponds to forbidding the simultaneous presence of a pair (p, k) and another
pair (p, k) in aschedule. If x; and x; are the corresponding decision variables of such two pairs, then a
binary constraint is defined as follows:

X +x<s1

Let C2 denote the set of all such pairs (x;, x) which should verify the above binary constraint.

e Ternary constraints

Some constraints involving limitations on instantaneous data flow cannot be expressed in the form of
binary constraints as above. These remaining constraints may however be expressed by relations over
three pairs (photo, camera). Such a ternary constraint corresponds to forbidding the simultaneous
presence of three pairs (p, k), (p, k), and (p, k). Letting X, x, and X, be the decision variables
corresponding to these pairs, then such aternary constraint is written:

X +X +X<2

Let C3_1 denote the set of al such triplets (X, X, x)) which should verify this ternary constraint.
Finally, we need to be sure that a schedule contains no more than one pair from {(p, k), (p, k), (p, k)}
for any (mono) photograph p. Letting X, X, and x, be the decision variables corresponding to these
pairs, then this (ternary) constraint is expressed as:

X+x +x<1
Clearly there are exactly nl ternary constraints of thistype. Let C3_2 denote the set of all such triplets

(X, X;, X,) which verify this second type of ternary constraints. Use C3 to denote the union of C3_1 and
C3 2,i.e.C3=C3.10C3 2.



2.2.4 Final model

Now the DPSP can be formally stated as the following generalized 0/1 Knapsack problem:
Max f(X) =2 <<, 0 . X

where x = (X,, X,,..., X,) {0,1}"andg=(9,, 9,,...,9,) O Z""

subject to

1) Y.<, C . XS Max_capacity with Max_capacity 0 Z"andc=(c,, C,...,c ) O0Z""

2 O(x, xj) 0 C2, x, +X < 1

3 0%, X, %) OC3 1, X +x+x <2
4) 0%, X, x) 0 C3 2, x +x +x, <1

This formulation is a special instance of the multidimensional knapsack problem (MKP) [Martello &
Toth 90]. However, let us point out a notable difference. While the constraints in a MKP are all
"knapsack constraints® like (Eq.1), the formulation above has a single "knapsack constraint” and three
types of "logic constraints’ (Eq. 2 to 4). Moreover, while the number of constraintsin aMKP israrely
large (for instance, well-known benchmark problems have at most 30 constraints), the number of
logic constraints may be very high (up to 36000 for some solved instances). Therefore, special
techniques are needed for handling these constraints in an effective way.

3. A TSalgorithm for DPSP
3.1. Reviewof TS

This section gives a brief review of Tabu Search, emphasizing the most important features which
have been implemented in our TS algorithm. For a comprehensive presentation of TS, the reader is
invited to consult the recent book by Glover and Laguna [Glover & Laguna 97].

Tabu Search is a meta-heuristic designed for tackling hard combinatorial optimization problems.
Contrary to randomizing approaches such as SA where randomness is extensively used, TS is based
on the belief that intelligent searching should embrace more systematic forms of guidance which are
based on adaptive memory and learning.

TS can be described as a form of neighborhood search with a set of critica and complementary
components. For a given instance of an optimization problem (S,f) characterized by a search space S
and an abjective function f, a neighborhood N is first introduced to associate, for each sin S, a non-
empty subset N(s) of S. A typical TS algorithm begins then with an initial configuration sin S and
then proceeds repeatedly to visit a series of locally best configurations following the neighborhood
function. At each iteration, one of the best neighbors s I N(s) is sought to replace the current
configuration even if s does not improve the current configuration in terms of the cost function. To
avoid the problem of possible cycling and to allow the search to go beyond local optima, TS
introduces the notion of tabu list, which is a foundation for the short term memory component of the
method.



A tabu list maintains a selective history H, composed of previously encountered solutions or, more
generally, pertinent attributes of such solutions. A simple TS strategy based on this short term
memory H consists in preventing solutions of H from being reconsidered for the next k iterations,
called the tabu tenure. The tabu tenure can vary for different attributes, and in general is problem
dependent. At each iteration, TS searches for a best neighbor from this dynamicaly modified
neighborhood N(H,s), instead of N(s) itself. Such a strategy prevents the search from being trapped in
short term cycling and imparts rigor to the search.

By means of the tabu restriction mediated by this memory, some non-visited, yet interesting solutions
may be prevented from being considered. Accordingly, aspiration criteria are introduced to overcome
this problem. A simple and widely used aspiration criterion consists of removing a tabu classification
from a move when the move |leads to a solution better than the best obtained so far.

Two other important ingredients of TS are intensification and diversification [Glover & Laguna 97].
Intensification consists in focusing the search to exploit regions of the space, or characteristics of
solutions, that the search history suggests are promising. For example, it may be applied to seek
improved solutions by incorporating "good attributes' of previously encountered solutions. On the
other hand, diversification undertakes to explore regions that differ in significant respects from
regions previously visited.

3.2. Components of the TS algorithm

3.2.1. Unconstrained and constrained sear ch space

» Definition 1: The unconstrained search space Sis composed of all binary vectors of m elements:
S={(X, X,..., X.) O{0, 1}™}

The size of S may become huge for high values of m. For some instances we solved, the value of m
can be as large as 2355, implying a search space of 2°°. However, a solution must verify the
constraints defined by Eqg. (1)-(4) and thus belongs to a constrained space. This leads to the following
definition.

o Definition 2: The totally constrained search space X is composed of all binary vectors of m
elements, satisfying the "knapsack constraint" and the "logic constraints”, i.e.

X ={sS| ssatisfies all the constraints defined by Eq. (1) - (4)}*
In general, an algorithm may work with either S or X. It is equally possible for an algorithm to work
with an intermediary space where some constraints are relaxed. It is this last approach which is
adopted in this work. For this purpose, we define a partially constrained search space C where the
knapsack constraint (Eq. (1)) isrelaxed.

» Definition 3: The partially constrained search space C is composed of all binary vectors of m
elements, satisfying the "logic constraints’, i.e.

C ={dS| sverifiesthelogic constraints defined by Eq. (2) - (4)}

! Hereafter, we will use the letter sinstead of x to denote a configuration (X,, X,,..., X ).



Note that not al the configurations in C are equally interesting. For example, s = (0, O, ..., 0) is
trivially in C but far from any global optimum. The following definition identifies a subset of C
which is particularly interesting from the point of view of the profit function.

» Definition 4: The saturated partially constrained search space M is a subset of C such that:
M={s0C | O(x=0)Us, setting x=1 violates some binary or ternary constraints defined by Eq. (2)-(3)}

Thus a configuration sOOC is saturated when no more pair (photo, camera) can be added without
violating some logic constraints.

The saturated set M is similar to the notions of "critical events' [Glover & Kochenberger 96] and
"promising zones' [Hanafi & Freville 97] developed for the MKP. The principle here is that the TS
algorithm will search for its solutions in the partially constrained search space C and try to stay at the
frontier of this saturated (promising) area.

3.3.2. Neighbor hood and move

We introduce now the neighborhood function N over the partially constrained search space C. More
precisely, this function N: C - (2°-0)is defined as follows.

Let s=(x, X,,....Xx, )OCands =(x',, X',,...X", ), then s isaneighbor of s, i.e. SON(s), if and only if the
following conditions are verified:

1) O!isuchthat x =0and X', =1 (1<ism)
2) for theabovei, U (x, x) 0 C2, X', = 0 (1<jsm)
3) fortheabovei, O (X, X, x) 0 C3_1, x’j + X', < 1(1sj, ksm)

Thus, a neighbor of s can be obtained by adding a pair (photo, camera) (flipping a variable x from O
to 1) in the current schedule and then dropping some pairs (photo, camera) (flipping some x; from 1 to
0) to repair binary and ternary constraint violations. Consequently, a move mv to obtain a neighbor s
from aconfiguration s= (x,, X,, X, ..., X,) is characterized by a series of flipping operations:

x, fromOto 1

x from1to0

X from1to0

where x; ... x, are variables linked to x; by a binary or ternary constraint. We use mv(i) = (x: 0-1, x
... X.: 1-0) to denote such amove.

The repair of aviolation of abinary constraint (x, x) [ C2 is a simple operation: it suffices to set x/,
to0ins (x=1ins). Repairing aternary constraint violation (X, x, x,) [J C3 is more complex since
there are different ways to proceed. For example, one may set either X', or X', to 0 in s’ randomly or
according to some criteria, one may set both x’; and x’, to 0 and so on. More details on this topic are
discussed later (85.3).



It should be clear that from a configuration s= (X, X,, ...,X_), the number of possible moves equals the
number of variables in s having value 0. Letting Z = {x, 0 s| s = (x,, X,, ...,X,) and x=0}, then N(s)
has exactly |Z| neighboring configurations.

Note that similar neighborhoods based on adding-dropping have been used in many heuristic
algorithms for MKP [Dammeyer & Voss 93, Fréville & Plateau 94, 97, Glover & Kochenberger 96,
Lokketangen & Glover 98, Hanafi & Fréville 98, Chu & Beasley 98]. However, one difference
remains that concerns the repair operation after adding an element: constraint repairing here is much
simpler since it concerns only binary and ternary logic constraints.

3.3.3. Incremental evaluation of the neighbor hood

TS uses an aggressive search strategy to exploit its neighborhood, i.e. at each iteration, the TS
algorithm examines the value f(s) for each candidate neighbor s' [ N(s) and chooses one that has the
best value. In order to do thisin an efficient way, we use an incremental evaluation technique. The
main ideais to keep in a special data structure d the move value for each possible move (neighbor) of
the current configuration. Thus if s = s+ mv(i), then &(i) is egqual to the difference f(s) - f(s). Each
time a move is carried out, the elements of this data structure affected by the move are updated
accordingly.

Since the number of possible moves for each configuration is defined by |Z]| (|Z| £ m), the data
structure & can be implemented with a vector of m elements: (i) gives the move value f(s)-f(s) if the
corresponding move mv(i) is carried out. The vector can be initialized at the beginning of the search
and updated after a move in time O(|C2_i| + |C3_i|) where C2_i and C3_i are subsets of the sets of
binary and ternary logic constraints (see §2.2) involving the element x. Searching for a best move
within & requires time O(m).

3.3.4. Tabu list management

Therole of atabu list is to prevent the search from short-term cycling (x: 1-0-1- 0...). Remember
that amove mv(i) = (x: 0-1, X ... X.: 1-0) consistsin flipping x; from 0 to 1 and flipping then x;, ...,
X,from 1 to O (to repair constraint violations). Each time such a move is carried out, the moves mv(j)
= (x: 0-1, ..) ... mv(g) = (x; 0-1, ..) are classified tabu during some iterations (tabu tenure),
forbidding to reset any of X, ..., X, from 0 to 1. The number of iterations k(t) during which a move
mv(t) (t =}...q) isclassified tabu is dynamically defined as follows:

k(t) = C(t) + a x FREQ(t)

where C(t) is the number of binary and ternary constraints involving the element x,, FREQ(t) the
number of times x, is flipped from 1 to O from the beginning of the search, and a = (<< C(i))/m
reflecting the hardness of an instance in terms of logic constraints. Therefore, the tabu tenure of a
move depends on two factors: the number of constraints containing the variable of the move and the
flipping frequency of the variable.

The ideafor the first part of the function C(t) is the following. A variable involved in alarge number
of constraints has naturally more risk to be flipped during a move than a variable having few
constraints on it. It is thus logic to give a longer tabu tenure for a move whose variable has many
constraints on it. Therefore, each time X, is flipped from 1 to 0, X, cannot be reset to 1 until at least



C(t) iterations have been realized. Similarly, a move concerning a variable involved in alow number
of constraintsis given shorter tabu tenure.

The second part of the function is dynamic and proportional to the flipping frequency of the variable
X, (from 1 to 0). The basic idea is to penalize a move which repeats too often. The coefficient o is
instance-dependent and defines a penalty factor for each move. For the instances we solved, the
values of a vary from 10 to 30.

At this stage, let us notice that FREQ(t) is the essential part in the above tabu tenure function. Other
frequency-based tabu tenures are also possible. For instance, the following ones have been
experimented.

k2(t) = FREQ(t)
k3(t) = axFREQ(t) (aisa constant)
k4(t) = C(t) + FREQ(t)

In practice, we observe that all these formulae lead to comparable results in term of quality of the
solutions found. However, according to the formula used, the resolution time may be quite different.
Indeed, for a same solution quality, the search using formula k(t) requires in general much shorter
time.

It should now be clear that using the frequency of a move to tune the tabu tenure of the move may be
considered as a general principle and thus applicable to other problems.

Finally, in order to implement the tabu list, a vector T of m elementsis used. As suggested in [Glover
& Laguna 97], each element T(i) (1< i <m) records k(i) + iter, instead of k(i) where iter isthe current
number of iterations. In thisway, it is very easy to know if amv(i) is tabu or not at iteration j: if T(i)
> j, mv(i) isaforbidden move; otherwise, mv(i) is a possible move.

3.3.5 Agpiration criteria

The tabu status of amove mv(i) is canceled if one of the two conditions (two-level aspiration criteria)
below isverified.

1) if the move mv(i) leads to a configuration s strictly better than the best configuration s* found so
far, i.e. f(s) > f(s*) even if srequires more memory,

2) if the move mv(i) leads to a configuration s of the same quality but s occupies less memory, i.e.
f(s=f(s*)andZ <, C.X <Zcc, C . X"

3.3.6 Heurigticsfor carrying out a move

Let s be the current configuration at a given iteration. Let M be the set of candidate movesfrom s, i.e.
the moves which are not forbidden by the tabu list and the moves which verifies the aspiration
criteria. Now, all the best moves (i.e. those having the highest &(i) values) are identified and then one
of them is chosen at random. Once such a move is determined, a best neighbor s of sisobtained (s =
s+ mv(i)). Before moving to the next iteration, corresponding data structures such as T (tabu list) and
0 (table of move values) are updated accordingly.



3.3.7 Intensification and diversification

The tabu mechanism may lead to a state where no move is admissible. This occurs when each
possible move has been tried a large number of times without improving the best configuration found.
When this happens, an intensification phase will be started.

The intensification used by the algorithm is based on a heuristic using long-term information: if an
element is present in a large number of good configurations, then it is highly possible that this
element is part of an optimal configuration. Heuristics of this kind are presented in [Glover & Laguna
97] and used by many TS algorithms.

To implement this heuristic, the algorithm uses a vector ker* of m elements ker* = (k, k,,...K ) to
collect high frequency elements. This vector is updated dynamically, following one of the two ways
below.

 Each time the algorithm finds a configuration s = (x,, X,,...,X,) giving the same profit as the best
onefound, i.e. f(s) = f*, ker* isupdated as follows: ker* = (x .k, X,.K,, ....X .K ).

 Each time the agorithm finds a configuration s = (x,, X,,...,X,) having a better profit than the best
onefound, i.e. f(s)>f*, ker* isreset to s, i.e. ker* =s.

From the vector ker*, we construct the search space | (for intensification) of indices of ker* in the
following way. Let To_1 be the set of indices of ker* that are equal to 1 and To_0 those equal to O.
Then the set | J To_0 contains such indices of elements that the flipping of these elements does not
affect the elements of To_1 even after repairing the logic constraints. The set | corresponds thus to
regions of the search space where the elements of ker* are fixed. During an intensification phase, the
algorithm runs on the set | and from the initial configuration sO = ker*. In this way, the intensification
forces the search to exploit exclusively the areas around the kernel ker*.

However, it is possible that ker* corresponds to a set of configurations trapped in alocal optimum. It
is for this reason that the algorithm builds dynamically another set D (for diversification) which
collects the indices of elements having a flipping frequency lower than the average. Thus the set D
corresponds to less visited regions of the search space. During a diversification phase, the algorithm
runs exclusively on the set D and from the initial configuration sO = 0. In this way, the diversification
drives the search to explore areas that are either new or have not been visited very often.

3.3.8 Relaxation of the capacity constraint

During the search, the capacity (knapsack) constraint may be violated by the current configuration
S=(X, X,...,X ), i.e, the tota size of s may exceed the maxima alowed capacity
(<<, C . x>Max_capacity). To satisfy the capacity constraint, the following mechanism is devised.
Each time the current configuration is improved, the capacity constraint is checked. If the constraint
is violated, the configuration is immediately repaired by suppressing the elements x; which have the

worst ratio g/c, until the capacity constraint is satisfied, i.e. Z << C . X, < Max_capacity.

Note that since we have only one knapsack constraint, the relaxation handling is much simpler
compared with the techniques used for the MKP [Pirkul 87, Glover & Kochenberger 96, Hanafi et al.
96, Hanafi & Fréville 98]. Indeed, for the MKP, one must decide how many and which knapsack
constraints are to be relaxed. Non trivial special techniques are also needed to deal with the relaxed
constraints.s
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3.3.9 General algorithm

The TS algorithm follows a general schema composed of three iterative phases: exploration,
intensification and diversification. The skeleton of the TS algorithm is given below.

Ceneral TS search algorithm

e s =(0...0)
e repeat the follow ng steps

1. Exploration:
e search over all the elenents of the partially constrained space C

(83.2) whenever a non tabu npve exists
« conpute the set | and the set D (83.3.7)
* reset tabu list
e set s = ker* [* Kker* is constructed during the search */
e go to Intensification

2. Intensification:
e search over the elements of the restricted space | (83.3.7) whenever
a non tabu nove exists
e reset tabu list
e set s =(0...0)
e go to Diversification

3. Diversification:
e search over the elements of the restricted space D (83.3.7) whenever
a non tabu nove exists
* reset tabu list
e set s = best solution found during this diversification step

e go to Exploration

TS search engi ne

1. Let s and s* be respectively the current and the best configurations;
2. Let M) be the set of candidate moves froms (Ms) induces a particular
search space C, | or D, see 8§3.3.6)
3. while O possible nmoves in Ms) do
choose a best move nmv(i) (break ties randomy) (c.f. 83.3.3, 83.3.6)

s' =s + m(i);

s = s';

update tabu list T and table of nove values o, (c.f.83.3.3, 83.3.4)
updat e ker*; (c.f. 83.3.6)

handl e (rel axed) capacity constraint (c.f. 83.3.8)

if sis better than s* then s * = s;

The general stop condition is defined by a maximum number of iterations allowed. The algorithm
returns the best solution s* found during the search. An alternative condition can be used to stop the
algorithm when a given value of the profit function is reached.

11



The different phases (exploration, intensification and diversification) use the same tabu search engine
(with different search spaces C, | and D). Each phase is triggered and stopped automatically by the
tabu list management (8 3.3.4), i.e. whenever no more moves are admissible. This is particularly the
case for intensification and diversification. This approach is quite different from previous work on
MKP where the rhythm of intensification and diversification phases are controlled by some
supplementary parameters [Glover & Kochenberger 96, Hanafi et al. 96, Hanafi & Fréville 98].
Finally, it should be noted that the tabu list management is claimed to be dynamic, however, in a
different meaning than that described e.g. in [Dammeyer & Voss 93].

4. Experimentation and results
4.1. Test data

Experiments are carried out on a set of 20 realistic instances’ provided by the French National Space
Agency CNES and described in details in [Bensana et al. 98]. We sketch here only some main
characteristics of these instances.

These instances belong to two different sets: without capacity constraint (13 instances) and with
capacity constraint (7 instances).

1) Set No.1l (without capacity constraint): The first set includes 13 instances having 67 to 364
candidate photographs, giving up to 809 binary variables and 14175 constraints.

2) Set No.2 (with capacity constraint): The second set includes 7 instances having 209 to 1057
candidate photographs, giving up to 2355 binary variables and 35933 constraints.

For the instances of the first set, the optima are known thanks to two exact algorithms: a CPLEX
commercia software using an ILP formulation and a non-standard Branch and Bound algorithm using
aVaued Constraint Satisfaction Problem (VCSP) formulation [Verfaillie et al. 96]. For the instances
of the second set, existing exact algorithms are unable to solve optimally these instances except the
smallest one, due to the existence of the capacity constraint and the large size. For these instances,
only sub-optimal solutions are known, which have been obtained by another tabu search algorithm
[Bensanaet al. 96].

4.2. Experimental settings

Our TS agorithm is programmed in C, and compiled using Visual C++ on a PC running Windows NT
(32 MB RAM, 200 MHz). To obtain our computational results, the TS algorithm is run 100 times on
each instance with different random seeds. Two stop conditions are used, when a given profit value is
reached or when a given maximum number of iterations are realized. The tabu tenure is managed
dynamically and automatically according to the formula givenin §3.3.4.

2 These instances are available via ftp from ftp.cert.fr/pub/lemaitre/LV CSP/Pbs/SPOT5.tgz
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4.3. Results on instances without capacity constraint

Since the optima are known for this set of instances, the algorithm is stopped when a solution of an
optimal profit value is found. We wish to know whether our algorithm is able to find the optimal
solutions for the instances in this set. Table 1 shows the results of the TS algorithm on these
instances.

For each instance, the following information is given. The first 4 columns give the name of the
instance, the number of candidate photographs n in P, the number of 0/1 variables m and the known
optimum. Columns 5-6 give the best (maximal) profit found by the TS agorithm, the minimal
number of iterations needed to find a solution of such a profit. Columns 7-8 indicate the number of
iterations and the running time needed to find a solution averaged over 100 runs.

best average perfor. |nb photo selected similarity digtinct

Pb.| n m opt. profit  iter iter  time(s)| max. min. max. min. solution
54 | 67 | 125 70 70 71 280 1 45 45 45 29 63
29 | 82 | 120 | 12032 | 12032 | 35 81 1 34 34 34 18 97
42 | 190 | 304 | 108067 | 108067 | 110 291 1 80 80 76 38 100
28 | 230 | 346 | 56053 | 56053 | 88 1296 1 47 46 46 7 95
5 ]1309]|809| 115 115 256 | 26007 7 96 93 71 15 100
404 100 | 158 49 49 36 596 1 33 31 31 15 100
408| 200 | 328 | 3082 | 3082 | 684 | 8479 1 63 60 52 23 100
412 300 | 544 | 16102 | 16102 | 831 | 33278 5 79 77 67 23 100
11 | 364 | 692 | 22120 | 22120 | 1540 | 133889 29 98 95 84 33 100
503 ] 143 | 259 | 9096 | 9096 84 907 1 70 69 55 25 100
505| 240 | 448 | 13100 | 13100 [ 910 | 25116 3 85 82 66 28 100
507 | 311 | 573 | 15137 | 15137 | 1885 | 97489 18 92 89 73 32 100
509 | 348 | 652 | 19125 | 19125 [ 2094 | 104408| 22 96 93 78 29 100

Table 1: Results on instances without capacity constraint

Columns 9-10 indicate the maxima and minima numbers of selected photographs among 100
solutions. Columns 11-12 show how similar these solutions are when they are compared in pairs: the
maximum and the minimum of the (100*99)/2 hit-wise comparisons are given. The last column
indicates the number of distinct solutions among the hundred solutions found.

Thus the fifth line means that the instance called 28 has 230 mono and stereo candidates
corresponding to 346 hinary variables and an optima schedule has a profit of 56053. The TS
algorithm finds a solution of profit 56053 (optimal value) after 88 iterations (in average 1296
iterations and one second over 100 runs). Any schedule among 100 solutions found contains at least
46 and at most 47 photographs. When the 100 schedules are compared in pairs, at least 7 and at most
46 pairs (photo, camera) are shared by two schedules. Finally, among (100*99)/2 possible pairs of
schedules, 95% of them are different.

Now let us make several comments about these results. First, the TS algorithm is very efficient and
robust for these instances. Indeed, for each instance and for each of 100 runs, the algorithm is able to
find an optimal solution. (It is for this reason that only the average iterations and computing times
over 100 runs, but not the average profit are given in the table.)

Secondly, the TS agorithm is fast. Indeed, both the number of iterations and computing time needed

to find an optimal solution are quite low (fewer than 140000 iterations for 29 seconds for the largest
instance). On average, the algorithm performs 3715 to 8372 iterations per second.
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Thirdly, these instances seem highly constrained since only a small number of candidate photographs
are selected in an optimal solution (col. 9-10). We observe also that except for three instances, all the
optimal solutions found (100 for each instance) are different, though they share always a subset of
pairs (photo, camera). This implies that these instances probably have many optimal solutions,
therefore are easy to solve.

4.4. Resultsfor instances with capacity constraint

Contrary to the instances without capacity constraint, no optimal solutions are known for this set of
instances except for the smallest one. Only sub-optimal ones are available, the best of them being
produced by another TS algorithm devel oped by the CNES (we discuss this algorithm later in §85.1).

To solve an instance, our TS algorithm is allowed to run 9 million iterations. This corresponds to
about one hour of computing time for the largest instance (delay considered reasonable by the CNES
and used by the TS algorithm of the CNES). Once again, the TS algorithm is run 100 times on each
instance with different random seeds. Table 2 gives the results of the TS agorithm together with the
best known results (sub-optima) for these instances.

best known best average worst
Pb. n m profit | time(s) | profit iter* profit iter. time (s)| profit
1401 | 488 | 914 | 174058 846 176056 4690 176055 | 547882 120 | 176053
1403 | 665 | 1317 | 174137 | 1324 | 176137 | 177354 | 176134 [ 816099 332 | 176133
1405| 855 | 1815 | 174174 | 1574 | 176179 | 519055 | 176175 | 1418907 | 1314 | 176171
1021 | 1057 | 2355 | 174238 | 2197 | 176246 | 8279411 | 176241 | 1707156 | 2422 | 176234
1502 | 209 61158* 13 61158 235 61158 1067 1 61158
1504 | 605 | 1253 | 124238 | 1011 [ 124243 | 196064 | 124241 [ 1092197 [ 405 [ 124239

Table 2: Results on instances with capacity constraint

For each instance, the following information is indicated. The first 3 columns have the same meaning
as for Table 1. Columns 4-5 show the profit and computing time (in seconds)’ of the best known
solutions. Columns 6-7 give, for the best solution found by our TS agorithm after 100 runs, the profit
value and the number of iterations needed to find such a solution. Columns 8-10 show the averaged
profit, number of iterations and computing time over 100 runs. The last column gives the profit of the
worst solution found by the TS algorithm over 100 runs.

From the datain Table 2, we may make the following remarks. First, these instances are much harder
than those of the first set, essentially due to the large number of variables and "logic constraints' (up
to 2355 0/1 variable or 1057 integer variables, and more than 30 000 constraints). Secondly, all the
solutions (even the worst ones) produced by our TS algorithm improve on the best known results,
both in terms of solution quality and speed of execution. The quality improvement is important,
reaching a gain of more than 2000 units of the profit function in most cases. Moreover, the computing
time needed to obtain such a solution satisfies by far the "one hour" constraint (40 minutes for the
largest instance). Thirdly, the TS algorithm seems very robust because the quality variations of the
100 solutions for each instance remain small.

% The TS algorithm of the CNES is programmed in Fortran 77 and was run on a Sparc 20/50 workstation.
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In order to see how difficult it is to reach a previously published best solution, another experiment is
carried out. We re-ran 100 times the algorithm on each instance and stopped a run when the best
known profit value is reached. Averaged results of this experiment is reported in Table 3.

Pb. cost | time () [ratio best-known/TH
1401| 174058 1 846
1403| 174137 4 331
1405| 174174 30 52
1021 174238 39 55
1502| 61158 1 13
1504| 124238 49 21
1506{ 165244| 196 10

Table 3: Effort to reach a previously best result

From this table, we see that only one second upto a few minutes are needed to obtain the previously
best solutions. Compared with the previous computing times (column 4), the running times of our TS
algorithm represent only avery small fraction (last column).

Table 4 gives more information about the solutions found by indicating the maximal and minimal
numbers of selected photographs among 100 solutions, and the similarity between these solutions.

nb. photos similarity distinct

Pb. n m max. min. max. min. solution
1401 488 914 148 144 127 40 100
1403 665 1317 213 208 170 65 100
1405 855 1815 253 242 189 71 100
1021 | 1057 2355 318 300 225 82 100
1502 209 413 166 166 114 69 100
1504 605 1253 280 274 188 102 100
1506 940 2060 314 299 221 95 100

Table 4: More information about solutions found

From Table 4, we see that as for the instances without capacity constraint, these instances are also
highly constrained. Indeed, only about one third to one half of candidate photographs are selected in a
solution. Once again, the solutions found for each instance always share some elements (photo,
camera), but the solutions are all different. This implies that these instances have probably many
(sub-optimal) solutions for a given profit value. This may be considered as an indicator that these
results may be further improved.

5. Discussions
5.1. Related work

As mentioned before, both exact and non exact algorithms have been developed for the DPSP. We
describe here briefly two such agorithms: an exact algorithm called Pseudo-Dynamic Search (PDS)
[Verfaillie et al. 96] and another TS algorithm developed by the CNES [Bensana et al. 96]. Let us
notice first both algorithms are based on an integer formulation of the problem: each variable
represents a candidate photograph and is associated to a value domain of {0,1,2,3} or {0,13}
according to whether it is a mono or stereo photograph. A configuration in the search space
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corresponds thus to a n-dimensional integer vector for a problem composed of n candidate
photographs.

The PDS agorithm is an hybridization of dynamic programming and Branch & Bound (B&B)
technigues. This algorithm consists in performing n searches (n being the number of variables of the
problem), each solving, with a depth first B& B, a sub-problem limited to a subset of the n variables.
Once a sub-problem is solved, its best profit value is recorded. This value is then used later as alower
bound for another unsolved sub-problem. This algorithm has proven the optimality for the 13
instances without capacity constraint (but failed for the instances with capacity constraint).

The TS agorithm of the CNES, denoted by TS-CNES hereafter, is quite different from our algorithm.
First, TS-CNES uses a different (integer) formulation of the problem. Secondly, it manipulates only
feasible configurations, i.e. those verifying all the constraints of the problem. Thirdly, it uses a
different neighborhood. Fourthly, it considers only a subset of neighboring configurations to make a
move. This is probably because no incremental evaluation technique is available. Fifthly, the tabu
tenure for each move is randomly taken from predefined (very small) ranges: (3..5) for problems of
size less than 500 candidate photographs and (7..10) for larger ones.

The TS-CNES algorithm has been compared with various forms of greedy and simulated annealing
algorithms and proved to be the best non-exact algorithm. Compared with our TS algorithm, however,
TS-CNES is less effective in terms of search power and speed of execution. Indeed, as shown in &4,
our TS algorithm significantly improves upon the best results of the TS-CNES algorithm for both sets
of instances (let us mention also that TS-CNES failed to find an optimal solution for 4 of the 13
instances without capacity constraint [Bensana et a. 96]).

5.2. Upper bounds

The computational results reported in this paper are much better than the previous best ones, in
particular for the instances of the second set with capacity constraint. Now, we can ask how far these
results are from optimal solutions. Currently, no definitive answer is known yet since all previously
attempts for finding optimal solutions failed. Another possible answer to this question consists in
seeking strong upper bounds. In this section, we review the known studiesin this area.

One obvious solution concerns the continuous linear programming. However, it is well known that
this approach could lead to a significant gap between the optimal discrete and continuous values. Eric
Bensana et al. have applied this approach to the problem described in this paper [Bensana et a. 96,
Verfaillie 99]. They have used CPLEX, an efficient implementation of the simplex algorithm, to solve
the relaxed problem (integrity constraints relaxed). Eric Bensana et al. reported continuous optimal
values (COV) which are largely above the discrete optimal values (DOV) for the instances of the first
set (Recall that optimal values are known for these instances). In fact, the ratio (COV-DOV)/COV
goes from 28% to 74% ! Even if they have not reported bounds on the instances of the second set, it is
reasonabl e to believe that L P bounds on these instances should be much worse, given the fact that the
instances of the second set are much larger and much more difficult.

Very recently, another attempt has been reported, which tries to tighten the bounds with a new ILP
formulation of the problem and the column generation technique [Gabrel 99]. In this new
formulation, the initial problem is decomposed into three independent sub-problems, one per camera.
For the resolution of the problem, CPLEX 4.1 is employed, together with a column generation
procedure. This approach improves the previous bounds for the instances of the first set, reducing the
(COV-DOV)/COV ratio to the range of 0% to 20%. However, like for the initial ILP formulation, no
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bound was reported for the instances of the second set, due to the huge number of columns that have
to be generated during the resolution.

Currently, studies continue on upper bounds for the instances of the second set. It should be clear that
deriving good upper bounds for these instances is quite difficult and constitutes itself a challenging
research topic.

5.3. Repairing logic constraints

Asindicated in §3.3.2, binary or ternary constraint violations are repaired when amoveis carried out.
A binary constraint violation is easy to repair since there is a single way to do this. However, the case
for aternary constraint violation is more complicated since there are different ways to achieve such a

repair.

Suppose that X, = x, = 1 and the move sets x; to 1. The constraint x; + X, + x, < 2 is thus violated and
needs to be repaired. Four cases are possible:

1) set both X, and x, to 0,

2) randomly set either x; or X, to 0,

3) set to O the element which has a smaller profit,

4) look ahead in an exhaustive way to determine the best choice in terms of lost profit.

We have tested and compared these possibilities on al the instances used in this study. We observe
that 3) and 4) give significantly better results than the other ones. In choosing between 3) and 4), the
technigue 4), which is more time consuming, gives dlightly better results than 3) in a few cases. For
the instances used in this study, experiments showed that no more than 5 elements need to be reset to
repair a ternary constraint violation after a move, implying that an exhaustive look ahead is still
possible. For the cases where more elements need to be forward-checked, the technique 3) should be
the best choice.

5.4. Handling the capacity constraint

The algorithm presented so far works within the partially constrained search space C (83.2.1
Definition 3). The capacity constraint is relaxed, i.e. during the search, the total capacity of the
current configuration may exceed the maximal alowed capacity. An alternative is to impose the
satisfaction of the capacity constraint during the search. In this case, the algorithm works within the
totally constrained search space and manipulates only feasible configurations. However, the
relaxation of the capacity constraint helps to obtain better results and to accelerate the search.
Intuitively, optimal or high quality sub-optimal solutions are located at the frontier of feasibility.
Often these solutions are difficult to reach uniquely from the feasible side. A more effective way isto
allow the search to oscillate around the feasibility frontier, increasing the chance to reach good
solutions. Strategies of this kind have been successfully applied to the MKP [Glover & Kochenberger
96, Hanafi & Fréville 98]. We show below that this is aso the case for our application, even if the
relaxation technique we used is different from those devel oped for the MKP.

To illustrate these points, experiments have been carried out to compare two versions of our

algorithm with and without capacity constraint relaxation. We re-run these two versions for the same
number of iterations and compare the quality of the solutions found. Fig. 1 and 2 show the
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comparative results on the instance 1504 (20 runs for each version of the algorithm, each run being
given 300 000 iterations).
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Fig. 1 & 2: Comparative results without (left) and with (right) capacity constraint relaxation

From these figures, we observe that the relaxation technique gives solutions of better quality for the
same search effort. Moreover, the relaxation version of the algorithm needs fewer iterationsto reach a
solution of the same quality. Finaly, the relaxation version is much more robust since it is less
sensitive to the initial random seeds used.

6. Conclusions

In this paper, we have introduced a "logic constrained" knapsack formulation for a real world
application, the photograph daily scheduling problem of the satellite Spot 5. Based on this
formulation, we have developed a highly effective tabu search algorithm. This algorithm incorporates
some important features including an efficient neighborhood, a fast and incremental technique for
move evauation, a method for automatic tabu tenure management, and intensification and
diversification mechanisms.

Computational results on a set of realistic benchmark instances have showed the effectiveness of this
algorithm. For the instances without capacity constraint, the algorithm finds all optimal solutions very
easily. For the instances with capacity constraint, the algorithm finds with little computational effort
previously best known results. More importantly, the algorithm significantly improves upon the best
known results using less than one hour of computing time on a pentium PC.

An analysis of the solutions (100 for each instance) produced by the algorithm showed that only one
third to half of the candidate photographs are retained in a schedule, indicating that these instances are
highly constrained. We observed that the solutions found for a given instance are quite different,
though they do share some elements in common. Thisimplies that the density of solutions for a given
profit is probably high. Therefore, we conjecture that if the obtained results (for the instances with
capacity constraint) are not optimal, they may be further improved by more powerful search methods.
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Unfortunately, for the moment nothing is known about the distance between the solutions found and
optimal solutions. An exact algorithm would allow us to answer definitively this question. Given the
hardness of these instances, a more realistic approach would be to develop more powerful techniques
for deriving strong upper bounds.
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